Chem notes 9.30.08 Lecture 9 (mo)

Complicated Explanations

Dispersion forces of HCl > HF Dipole-dipole forces of HF > HCl Boiling point HF > HCl because hydrogen bond of HF is strongest

*Dipole – Dipole moment matters most in small molecules *Dispersion Forces matter most in large molecules

Solid to Liquid = Molecules must overcome forces just a little bit Liquid to Gas = Molecules must completely overcome forces of attraction and escape

In Diagram: CH₄ through SnH_4 line – As molecule gets bigger, dispersion forces get greater, it takes more energy to break the forces

Mixed Intermolecular Forces

3 kinds of attractions when an ion is dissolved in water

1. Water – water

Dipoles will align

2. Ion - ion

Ions will attract cation to anion and vice versa

3. Ion - dipole

A specific orientation of dipoles will form around the ion (depending on whether it's a + or - ion

4. Dipole – induced dipole

Dipole causes momentary dipole in non-polar molecule This is why it is possible for non-polar molecules to dissolve in polar molecules

What is a solution?

*Solution = mixture

*Dispersion and uniformity involve entropy

*Substance - Chemical that can't be broken down without a chemical reaction

Which is which? And how can you tell the difference between them?

**Refer to slide for statement

- 1. melt
- 2. dissolve
- 3. dissolve
- 4. dissolve and react

Sugar (number 2)

- Sugar is a molecule that breaks apart in tea
- The tea tastes sweet in every part of the cup because it is uniformly dispersed
- Sugar in this instance is not being melted; to melt it must be heated in its pure form (sugar in a pan by itself)

Helium in balloon (number 3)

- Helium dissolves in the air when the balloon is popped
- Helium does not react because it is inert

Alka Seltzer (number 4)

- Chemicals do not react in solid form (when tablet is in foil wrapper)
- H_2O is the medium that allows the chemical reaction to occur
- When tablet is put into water, the different parts (acetaminophen, flavor, NaHCO₃) <u>dissolve</u> in the water
- Sodium bicarbonate <u>reacts</u> with water and creates bubbles (CO₂)

*Melting is the change from a solid to liquid of a <u>pure substance</u>

*Dissolving is always a mixture of two substances (solvent and solute)

Recognizing solutions

*Dissolving = mixing

*Solution = one substance is completely mixed into the other

The solutions we usually study are aqueous

*Aqueous solution = water and something that can be dissolved in water

- All aqueous solutions are liquid, even though before the water and solute were mixed, one may have been a solid or a gas (seltzer water, alka seltzer)

Solvent vs. Solute

In helium balloon example:

- Helium = solute
- Air = solvent

*Helium (solute) is dissolved in air (solvent)

Solubility, saturation, and supersaturation

3 conditions of solution

- 1. Saturation
- 2. Below saturation
- 3. Supersaturation

Solubility = point of saturation

- most commonly a solute mixed into 100 mL of water

*In picture of NaCl dissolving in water

- Crystal of NaCl at bottom of beaker
- Hydration shells form around Na⁺ and Cl⁻ ions
- Hydrations shells cover ions and make them look like water

Solubility = Maximum amount that can dissolve (at a given temperature)

<u>Positive slopes</u> Solubility increases Temperature increases Endothermic change

<u>Negative slopes</u> Solubility decreases Temperature decreases Exothermic change

KNO₃ is most endothermic on graph

Little energy input = drastic increase in solubility

*For a crystal to form at supersolubility, additional input of energy is needed

How to read a solubility curve

**see slide for questions

- 1. 43g KCl
- 2. KNO₃
- 3. 40g NaCl in 100g water
- Supersaturated
 Dissolve KClO₃ at higher temperature to make sure it dissolves, and then cool to 60° and the solution becomes supersaturated

Energetics of dissolving process (at dilution) or Enthalpy of solution

*Break bonds = endothermic *Make bonds = exothermic

- 1. Separation of solute molecules = most completely overcome forces of attraction
 - Energy put into system
 - Endothermic
- 2. Separation of solvent molecules = intermolecular forces must be overcome to make space for the solute molecules
 - Energy put into system
 - Endothermic

- 3. Formation of solute-solvent interactions
 - Separated states come together
 - Energy is given off when bonds are created
 - Exothermic

*When potential energy is lower = more stable

*Review Hess' Law

- No matter which path is taken, the sum of all segments will equal the end result.

Is a particular solution process endothermic or exothermic?

*<u>A process is endothermic</u> if the energy to break bonds > energy given off by bonds Created

*<u>A process is exothermic</u> when the energy given off by bonds created > energy required to break bonds

Remember the solubility rules?

Contradictions of solubility rules

*Every compound has limited solubility based on temperature

*There is no such thing as completely insoluble